内的纸片上写着获得该物品。不少人以为先抓阄和后抓阄可能面临不同的机会。但是,真的是这样吗?
一个博弈论专家的教训
俄罗斯轮盘赌中的胜负纯粹依靠运气。但是在另一场轮盘赌中,一个博弈论专家本可稳操胜券,却因为未曾细想其策略而满盘皆输。
巴里·奈尔伯夫(Barry Nalbuff)是一个博弈论经济学家。他与迪克西特合作的《策略思维》是一本非常著名的博弈论科普之作。在那本书中记录了巴里的一次深刻教训。话说当年巴里为了庆祝大学毕业,参加了剑桥大学的五月舞会。庆祝活动的一部分包括在一个赌场下注。每人都得到相当于20美元的筹码,截至舞会结束时候,收获最多的一位将免费获得下一年度舞会的入场券。到了最后一轮轮盘赌的时候,纯粹是出于一个令人愉快的巧合,巴里手中已经拥有了相当于700美元的筹
【更新慢或者章节错误,点击举报(请详细说明)】
'19'面对不确定性的制胜策略(2)
码,独占鳌头。第二名是一位拥有300美元筹码的英国女子。其他参与者实际上已经被淘汰出局。该女子提出与巴里分享下一年的入场券,但是巴里拒绝了。是的,自己占有绝对的优势,怎么可能满足于得到一般的奖赏呢?
为了理解接下来的策略,有必要交代一下轮盘赌的规则。典型的轮盘赌是轮盘上刻有37个数字,标记为0~36。轮盘赌的输赢取决于轮盘停止转动时小球落在哪一格。假如小球落在0处,就算庄家赢。轮盘赌最可靠的玩法就是赌小球落在偶数还是奇数。这种玩法的赔率是一赔一,比如1美元赌注变成2美元,不过取胜的机会只有18/37(37个格中除了0外只有18个偶数,或18个奇数)。采取这样一种玩法,即使该女子押上全部300美元筹码也不能稳操胜券。因此她被迫选择一种风险更大的玩法,她把全部的筹码押在小球落在3的倍数上。这种玩法的赔率是二赔一(若她赢了,则她的300美元将变成900美元),但取胜的机会只有12/37(37格中除0外有12个数字是3的倍数)。
现在,那名女子已经将她的筹码摆上桌面,表示已经下注,不能反悔。那么巴里应该怎么办呢?
读者也可以先想一想巴里应该怎么办。真实的结果是,巴里将200美元押在偶数上,并且嘀咕他输掉冠军宝座的唯一可能性就是他输并且她赢,而这种可能性发生的几率为1∶5,因此形势对他非常有利。然而,几率为
1∶5的事件也时有发生。在这里,结果是那名女子赢了。
事后,巴里承认做出这种错误的押注方式是因为当时已经凌晨三点,他喝了太多香槟,没有办法保持头脑清醒了。他真正应该采取的策略是模仿那名女子的做法,同样把300美元押在小球落在3的倍数上。为什么呢?因为尽管小球是否落在3的倍数上是不确定的,但若巴里采取与女子同样的押注方式,那么出现的结果只会是要赢一起赢,要输一起输,但无论输赢巴里都会比那名女子多出400美元而获得冠军宝座。相反,如果巴里采取与女子不同的押注方式,则女子赢得赌注而巴里输掉赌注的可能性就是存在的—这正是真实的故事。
这件事情给了巴里一个深刻的教训。保持清醒的头脑来选择最恰当的策略对于在博弈中取胜是至关重要的。不过,在毕业晚会上这样兴奋、疲倦的时刻,保持清醒头脑可能也很不容易。不仅巴里如此,其实那个女子也是在不清醒的状态下偶然取胜的。怎么可以判断出来?很简单,巴里只要采取与那名女子一样的策略,那名女子就必败,只有两人采取不一样的策略时,那名女子才有获胜的可能;既然如此,该女子就不应率先下注,因为率先下注,巴里就可以跟随其下同样的注;她应该等巴里先下注,然后再下与巴里不同的注,这样才更有反败为胜的可能。
巴里的这个故事所蕴涵的道理是深刻的。在现实中,我们常常会发现类似的领先者模仿落后者的例子。比如帆船竞赛,领先者总是试图与落后者保持同一航道,而落后者总是希望走上与领先者不同的航道。因为帆船会受到风速、风向的随机影响,对于不同航道的船,这种随机影响可能有差异,但同一航道则影响往往是一致的。领先者维持与落后者同一航道,就可避免因随机因素影响而失败;而落后者选择与领先者不同的航道,虽不能保证胜利,但可以通过随机因素获得反败为胜的机会。在一个市场中的企业其实又何尝不是如此?先进企业常常会采取大多数企业所采取的比较保守的常规战略,而后进企业中有不少则提出“超常规发展”。遵循常规的后进企业没有机会超越先进企业,而“超常规发展”战略虽然面临更大的风险,却的确也成就了少数恰好碰对了运气的企业。同样的情形也出现在股市分析员和经济预测员身上。业绩领先的预测员总是想方设法随大流,尽量做出与其他人差不多的预测。这样一来,大家就不容易改变对这些预测员能力的看法。另一方面,初出茅庐的预测员则常常会采取冒险策略:他们喜欢预言市场出现繁荣或者崩溃。通常他们都会说错,以后再没人相信他们。不过,偶尔也有人做出了正确的预测而一夜成名,从此扬名立万。
【更新慢或者章节错误,点击举报(请详细说明)】
'20'面对不确定性的制胜策略(3)
我还想到了另一个例子。前不久的北京奥运会,相信大家对中国乒乓球的辉煌赛绩仍历历在目。在好些场中外选手对抗中,外国运动员都采取了所谓的“搏杀”。搏杀行为是一种高风险策略,它可能使自己失误更多,当然对对手也有较大威胁。那些外国运动员为什么要采取搏杀?因为他们处于弱势。他们的搏杀行为与后进企业、初出茅庐的预报员等采取更冒险的行为本质上有相同的效果。
应该先与谁赛
读者大概都听说过“田忌赛马”的故事。话说齐王有上、中、下三马,田忌也有上、中、下三马,但田忌每一个等级的马都不及齐王同等级的马,因此田忌每每以“上中下”对齐王“上中下”都惨遭失败。后来孙膑为其出谋划策,以下马对齐王上马,以上马对齐王中马,以中马对齐王下马,取得一负二胜的成绩。
今天,我们将赛马的故事再改编一下,来看看概率计算对于不确定性下的策略选择的重要性。
话说齐王知道了孙膑为田忌出谋划策而使田忌赢得比赛后,心中暗叹此人聪明,又有些不服气。于是叫来田忌、孙膑要再赛一场马,并且他要和田忌组成联队对抗孙膑,即每个人一匹马,但是齐王和田忌组成联队与孙膑比赛,规则如下:齐王和田忌轮流与孙膑比赛,若三局中
孙膑连胜两局就算孙膑胜,否则就算孙膑输;不过孙膑有权挑选先跟谁比赛。
现在,已知的情况是齐王的马比孙膑的马好,孙膑的马比田忌的好。孙膑与齐王比赛则每局有0。4的可能性取胜,跟田忌比赛则有0。7的可能性取胜。那么,孙膑最好选择先与谁进行比赛呢?
乍一看,孙膑先与田忌比赛,则与齐王只需要赛一局,似乎比较有利。而另一方面由于要连胜两局,第二局非胜不可,则似乎又应选择与田忌赛第二局,因此先与齐王比赛好像更有利。究竟应该怎么选择呢?不妨推导看看。
假设孙膑胜齐王的概率为a,胜田忌的概率为b,且a<;b(胜田忌更容易)。孙膑要连胜两局,则必须是“胜胜胜”、“胜胜败”或“败胜胜”。故先与齐王赛则获胜的概率为:aba+ab (1-a) + (1-a) ba = ab (2-a)。若先与田忌赛,则获胜的概率为bab + ba (1-b) + (1-b) ab = ab (2-b)。因为a<;b,所以这里应该先选择与齐王比赛获胜的概率更大。如果把a = 0。4,b = 0。7代入前面的计算,则可发现,如果先与齐王比赛,则孙膑获胜的概率为0。448,如果先与田忌比赛,则孙膑获胜的概率为0。364。
这个故事说明,有时候确定一下与对手竞争的顺序,对自己是有好处的。小到体育比赛日程的安排,大到国家法案立法讨论的顺序,往往都可以影响成败的概率。这也是在竞争中,人们在赛前纷纷展开影响竞争顺序安排的游说活动的原因。
三方对决:弱者的生存之道
下面要讲的例子在我的《身边的博弈》一书中曾提到其简单版本,现在考虑得相对复杂一点,概率计算上也更为困难一点。建议有概率论基础的读者阅读;无概率论基础的读者可跳过分析过程。
A、B、C三人决斗,每人每次发射一枪。A枪法最差,命中概率为PA;B一般,命中概率为PB;C是神枪手,命中概率为1。显然PA<;PB<;1。三位按照ABC的顺序依次发射,直到只剩一人存活。每个射手,在轮到其发射时,他可以选择任一对手开枪射击,也可以对空射击(不会射杀任何人)。假设任一射手一旦中枪即毙命,死亡的射手不允许再射击。
现在的问题是:A的最佳策略是什么?
A的最佳策略,应当是使A有最大生存机会的策略。为了寻找最佳策略,可以这样分析:如果只剩下一个对手,那么最佳的选择就是向那个对手开枪;如果两个对手都存在,而轮到A射击时,那么情况就与博弈开始时由A射击的情况一样。所以,只需要重点考虑A刚开始博弈时会怎么选择。
A刚开始博弈时面临的选择不外乎三种:对空发射、对C发射、对B发射。对此三种情况逐一分析。如果A射B,若射杀B,就等于签了死亡协议(因为接下来就是C射A);若没能射杀B,则与对空放枪没两样,接下来B会先攻击C(因为C比A对B更危险),A就赚得一轮机会。结论是:对B发射的策略,严格劣于对空发射的策略。再看A射C的情况,若射杀C,则接下来该B射A,因此A存活概率不会超过1…PB;若未能射杀C,则接下来B射C,无论B是否得手,A存活的概率都不低于PA(请读者想想为什么)—而未射杀C与对空发射并无两样。显然,只要PA≥1-PB,则射杀B也严格劣于对空发射。最终的结论是,若PA≥1-PB,则A的最佳射击策略是:B、C都存在时就始终对空发射,若B、C仅剩一人则对幸存者发射。当然,不能排除有这样的情况,PA<;1-PB,此时A选择射C还是对空发射,就需要更细致的分析才可以讨论。
容易发现,当B稍强时,A最好先放手,让B对付C,然后再与B和C的幸存者拼命;若B也较弱,那么A应当先协助B对付C,以谋求更大的生存机会。
这个例子也刻画了现实生活中弱者的生存之道。在一强两弱的三方对决中,如果次强者相对较强,那么弱者最好是退一步,让次强者与强者争锋,然后再与其中的胜者拚命;如果次强者能力与弱者也相差无几,那么弱者应与次强者联合对付强者,然后再与次强者拚命。历史上的三国,就是这样一种情形。 其对于现实生活的启示,还可参见《身边的博弈》的第1章。
【更新慢或者章节错误,点击举报(请详细说明)】
'21'应对风险的策略(1)
前面这些例子说明,如何可以通过选择不同的策略来提高竞争中获胜的概率。这些策略选择并不会影响不确定性本身所导致的风险—不能降低风险,也没有考虑如何规避风险。在现实生活中,我们其实还有很多措施可以降低风险、规避风险或者操纵风险获利。下面就是这样的例子。
风险混合:鸡蛋不要放在一个篮子里
应对风险的第一种重要方法是对风险进行混合。即达到降低风险的目的,将不同的收入风险结合起来。
举个例子来说。你居住在一个小岛上,以种植为生,这是一个完全靠天吃饭的职业。这个小岛很奇怪,岛的东部和西部的天气刚好相反,东部是好(或坏)天气,则西部就会是坏(或好)天气。用专业术语来说,那就是岛的东西部天气是完全负相关的。
现在你要做出决定,将1千克小麦种子播种在东部还是西部。1千克种子若遭遇好天气,可产出100千克小麦;若遭遇坏天气,则颗粒无收。
考虑不对风险进行混合,即你只把种子播在东部或西部。结果很明显,无论你播种在东部还是西部,你的预期收成皆为100×0。5+0×0。5=50千克。但这50千克的预期收成具有很大的风险,因为你并不是得到确定的50千克,而是要么得到100千克,要么得到0千克(倘真如此你就捱不过日子了,风险确实大!)。或者说,你面临的结果具有很大的离散程度(离散程度越大,风险越高)。
现在考虑对风险进行混合。你的决定是将1千克小麦分为两份,分别播种在东部和西部,比如0。5千克小麦种在东部,另外0。5千克种在西部。你的预期收成将是多少呢?可以这样想:如果东部天气坏,则东部收成为0,但此时西部天气必然好,则西部收成50;如果东部天气好,则东部收成50,但此时西部天气必然坏,则西部收成0。也就是说,你这种对风险进行混合的策略,使得你总可以得到确定的50千克小麦,这50千克小麦收成没有任何风险(结果的离散程度为0)。因此,通过这样的风险混合,你的确在维持预期收成相同的情况下降低了风险。
当然,读者也可能会说,风险之所以降低也许是因为你假定了东部和西部的天气变化刚好是相反的(完全负相关),如果它们不完全相反,这个结论还可靠吗?为了回答这个问题,不妨放宽先前的假设,重新假设东部和西部的天气变化相互之间完全独立,即东部天气和西部天气没有任何联系。那么,先前的风险混合策略所得到的预期收成是多少呢?可以发现,你将面临的结果无非是以下四种:
?东部好天气,西部坏天气:总收成50,概率0。25 (=0。5×0。5)。
?东部好天气,西部好天气:总收成100,概率0。25。
?东部坏天气,西部坏天气:总收成0,概率0。25。
?东部坏天气,西部好天气:总收成50,概率0。25。
你的预期收成仍是50千克(=50×0。25+100×0。25+0×0。25+50×0。25)。但是与没有混合风险的策略相比较,你现在至少有0。5的概率会收成50千克;同时,获得100千克或0千克两种极端结果的概率,也从各自的0。5下降到了0。25。换句话说,现在你减少了极端结果发生的概率,而增加了中间结果发生的概率—这减小了结果的离散程度,风险因而也降低了。事实上,只要东部和西部的天气不完全正相关,则通过分散播种来降低收成风险就总是可行的。
【更新慢或者章节错误,点击举报(请详细说明)】
'22'应对风险的策略(2)
风险混合,这一降低风险的原理,是许多现实的风险规避机制被人们采用的理论基础。可以类推,你现在要投入的不是小麦种子,而是股票投资,那么投资于几种价格走势不完全正相关的股票,就比投资于单一股票的风险要小。这一分散投资原则正是诺贝尔奖得主经济学家詹姆斯·托宾曾经说过的一句名言:“不要把鸡蛋放在一个篮子里。”中国古代谚语“狡兔三窟”,也是同样的道理,将希望寄托在多个途径,比吊死在一棵树上的风险要低。同样,家庭、企业、国家有着多种经济来源和经济成分,比单一经济来源和经济成分面临的收入风险要低。城市之所以比农村有更强的抗风险能力,不仅因为城市具有